SqueezeCache: Beyond “Optimal” Eviction for Data Analytics

Xiangpeng Hao*!, Nikhil Nayak!, Proteet Paul!, JP Guthi!, Andrew Lamb?, Jacopo Tagliabue®,
Andrea Arpaci-Dusseau!, Remzi Arpaci-Dusseau!

!University of Wisconsin-Madison

ABSTRACT

In disaggregated cloud analytics, caching is essential to mask stor-
age latency. However, existing mechanisms—treating data as opaque
blocks to keep or evict—are fundamentally inefficient: queries often
access only a small fraction of cached data (e.g., checking a string
prefix), so most in-memory bytes are wasted even under optimal
replacement policies.

We introduce SqueezeCache, a caching system that “squeezes”
before evicting data. SqueezeCache caches data by how it is used,
not just how frequently it is accessed: instead of discarding an entry,
it transforms data into compact, lossy representations (e.g., string
fingerprints, quantized integers, or extracted datetime components)
that can still answer common query predicates. When representa-
tion is insufficient, SqueezeCache fetches full data from storage.
By leveraging column lineage, SqueezeCache adapts to query pat-
terns, generalizing result caching and materialized views while en-
abling cross-engine sharing. Evaluation on ClickBench shows that
SqueezeCache improves cache hit ratios by up to 4x and reduces
query latency by up to 22X compared to standard approaches.

PVLDB Reference Format:

Xiangpeng Hao™!, Nikhil Nayak!, Proteet Paul!, JP Guthi', Andrew Lamb?,
Jacopo Tagliabue®, Andrea Arpaci-Dusseau!, Remzi Arpaci-Dusseau’.
SqueezeCache: Beyond “Optimal" Eviction for Data Analytics. PVLDB,
14(1): XXX-XXX, 2020.

doi: XX XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/XiangpengHao/LiquidCache.

1 INTRODUCTION

Caching is a core primitive in data-intensive systems. It bridges the
gap between compute and storage, enabling systems to scale beyond
memory while masking storage latency and cost. Modern cloud-
native analytics, where data typically resides in remote storage [4-
6, 47, 63], relies on effective caching even more, as the compute-
storage gap is even larger [27]. The effectiveness of caching is
determined by both policies — deciding which entries to keep in
memory — and mechanisms — controlling how to move data between
compute and storage.

*Contact: xiangpeng. hao@wisc.edu

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

InfluxData  *Bauplan Labs

Query engine

Optimizer
Used by CPU Data[ Lineage
0.03 GB Policy
Squeezed (0.28 GB) | «———SqueezeCache — Squeeze

[ Compressed (0.5 GB) «DB cache

{ Raw data(l.7 GB)

}-—OS cache

Figure 1: SqueezeCache caches data by how it is used, not just how
frequently it is accessed. It significantly closes the gap between cached
data size and utilized data size. Numbers shown for ClickBench Q25.

Prior work proposes many cache policies [33, 44, 49, 68, 71] that
improve hit rates under diverse workloads. Cache mechanisms have
received less attention and follow two main designs: (1) memory-
mapped designs relying on the OS to move pages [8, 9, 22], and (2)
application-managed designs that compress data before writing to
disk [29, 32, 72].

Our study finds that most cached data is never accessed,
even under Belady’s [13] optimal replacement policy. The
issue lies in the mechanism. Modern analytical systems typically
cache data in semantic units (e.g., vectors, column chunks, or row
groups). While this granularity aligns with columnar processing,
it introduces a source of inefficiency: retaining a unit for a query
operation (e.g., a filter, extraction, or projection) forces the cache to
store the entire data representation of every value in that unit, even
if the operation only consumes a few bits of information per value.

Consider a simple query: SELECT a ... WHERE b = ”.To pro-
cess this, an engine first evaluates the filter b = ”. Our key obser-
vation is that such filters often rely on a tiny subset of the data:
determining if a string is empty requires only its length, not its full
byte content. Yet, because conventional caches treat data as opaque
blocks, they must store the entire string just to preserve this length
information.

This granularity mismatch creates a massive gap between data
stored and data utilized. As Figure 1 illustrates with ClickBench Q25,
while the CPU consumes only 0.03 GB of information to execute
the query, the OS cache holds 1.7 GB of raw data. Even application-
managed compressed caches are forced to retain 0.5 GB.

SqueezeCache addresses this inefficiency by introducing a third
option: squeeze. Instead of the binary choice—evict entirely or
keep entirely—offered by conventional mechanisms, SqueezeCache
transforms entries into compact, lossy representations (e.g., retain-
ing only the string length). This approach reduces the memory
footprint to 0.28 GB (Figure 1) while preserving enough informa-
tion to resolve most filters. By decoupling retention from eviction,
SqueezeCache complements existing policies: it maintains these
lightweight summaries in memory and incurs disk I/O only when
a query explicitly demands full fidelity.

While simple in concept, squeezing requires a holistic design


https://doi.org/XX.XX/XXX.XX
https://github.com/XiangpengHao/LiquidCache
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

across the system to fully unlock its potential. We summarize three
challenges below. First, the cache must efficiently transform user
input into a squeezable representation and reconstruct the original
view on get. Second, the squeezeable data must perform eager
evaluation on essential data first, and only read full data when
necessary. Third, we need a squeeze policy — along with the cache
policy - to decide how much to squeeze for each entry.

We propose SqueezeCache to scale beyond memory limits by
addressing these challenges. First, SqueezeCache provides Squeez-
able Data Layouts (Section 4) for common datatypes (strings, in-
tegers, floating-point numbers, and datetimes) that structurally de-
compose data to allow partial retention. Second, it employs Lin-
eage Pushdown (Section 7.1) to enable predicate evaluation di-
rectly within the cache using existing query engine infrastructure.
Third, it uses a Multi-State Squeeze Policy (Section 6) that treats
data fidelity as a spectrum, dynamically adjusting the “squeeze
level” to balance memory pressure and I/O cost. SqueezeCache re-
quires no changes from end users and has become the default “evic-
tion” mechanism in the broader LiquidCache project.

We evaluated SqueezeCache using real-world workloads includ-
ing ClickBench and JSONBench. Our results show that Squeeze-
Cache improves cache hit ratios by up to 4x and reduces end-to-
end query latency by up to 22X compared to baselines. Addition-
ally, it reduces I/O traffic by up to 12X in memory-constrained en-
vironments. Our contributions are as follows:

o We propose a squeeze operator that enables larger-than-memory
pushdown caching.

e We build SqueezeCache, a reference implementation that inte-
grates squeeze into existing systems.

o We evaluate SqueezeCache through comprehensive experiments.

2 BACKGROUND

2.1 Caching Policies and Mechanisms

Efficient caching is fundamental to database performance, and a
plethora of cache replacement policies have been proposed over
the decades. Classical algorithms like LRU-K [49], ARC [44], and
2Q [33] are widely deployed, balancing recency and frequency to
maximize hit rates. Recent years have seen a surge in machine
learning-based and heuristic-driven policies presented at top-tier
venues. For instance, ReCache [10] introduces reactive caching for
heterogeneous data, ChronoCache [28] enables predictive mid-tier
query result caching, while FIFO-based queues [68] and SIEVE [71]
challenge the complexity of traditional eviction schemes by demon-
strating that simpler, scalable eviction can match or outperform
sophisticated ones. More recently, approaches like linear elastic
caching [35] leverage ski-rental algorithms to optimize for cloud
cost models, and other works focus on ensuring cache consistency
and monotonicity [18].

Beyond policy (what to evict), significant attention has been paid
to the mechanism of caching (how and where to store data). In the
era of disaggregated storage, systems like Crystal [25], STsCache [34,
39], and TSCache [41] explore unified and semantic caching to push
data closer to compute. Tiered memory systems [32, 42, 48, 52]
leverage CXL and NVMe to extend DRAM capacity, while domain-
specific caches like MinIO [46] mitigate data stalls in DNN training.

At the infrastructure level, CacheLib [14] provides a production-
grade caching engine deployed at scale, and Ditto [54] introduces
elastic memory-disaggregated caching. However, most existing
work treats the cached unit as an opaque block—either keeping it
entirely or evicting it entirely. SqueezeCache differs by introduc-
ing a Squeeze mechanism that partially retains data, bridging the
gap between binary eviction decisions.

2.2 Caching for Cloud-Native Analytics

Cloud-native architectures have changed the assumptions of data-
base caching. With compute-storage separation [47, 63], data re-
sides in remote object stores, making local caching critical to mask
latency and reduce costs [27]. Cloud warehouses like Snowflake [57],
Google Napa [3], Amazon Redshift [60], and Krypton [19] rely
on local SSDs and memory for hot data. FlexPushdownDB [69]
hybridizes caching with computation pushdown, while Compu-
Cache [70] explores remote caching using spot VMs. SqueezeCache
aligns with this trend, optimizing the value density of cached data.

This study: column lineage

Filters,
Query engine proj., aggr. | 1jquidCache
Relevant data

<+———Data flow
weeegeControl flow

Figure 2: LiquidCache architecture. LiquidCache serves as the host en-
vironment for SqueezeCache. It sits between cloud storage and the query
engine, exposing a schema-aware interface that supports control flow push-
down. This allows SqueezeCache to analyze query intent and optimize data
layout to improve memory utilization.

2.3 Architectural Prerequisites

SqueezeCache relies on a cache that is not merely a block store
but an active component with insight into data semantics and
query intent. It targets the “Smart Cache” architecture emerging in
modern warehouses and lakes (e.g., Snowflake [57], Crystal [25],
LiquidCache [31]). We identify three prerequisites: 1. Schema-
Awareness. The cache must understand data structure (e.g., columns,
types) to apply type-specific squeezing (e.g., datetime extraction)
that generic page caches cannot. 2. Fine-Grained Accessibility.
The storage format must support reading sub-components (e.g.,
columns or byte ranges) without fetching entire objects. Columnar
formats like Parquet and Arrow naturally satisfy this. 3. Control-
Plane/Data-Plane Coordination. The query engine must inform
the cache about data usage (e.g., “this column is only used for a
year filter”). This pattern is common in systems with pushdown
interfaces [25, 69].

LiquidCache. We implement SqueezeCache within LiquidCache [31],
a caching system that explicitly satisfies these prerequisites. Figure 2
shows the architecture: it sits between the cloud storage and the
query engine, exposing a schema-aware interface that supports con-
trol flow pushdown. LiquidCache automatically manages data fetch-
ing and encoding, providing the necessary hooks for SqueezeCache
to intercept eviction decisions and inspect column lineage. While we
use LiquidCache as our reference implementation, the principles of
SqueezeCache apply to any system fitting this architectural pattern.



Query engine

Optimizer

Data 2.Lineage pushdown

SqueezeCache

3.Squeeze Policy

[UncompressedF——ﬂCompressedF——vl.Partial evict——*{Evicted
\

Figure 3: Overview of SqueezeCache. It has three core components:
squeezable data layouts, lineage pushdown, and squeeze policy.

2.4 Relationship to Existing Mechanisms

SqueezeCache generalizes result caching and materialized views.
Unlike these engine-specific approaches, SqueezeCache enables
cross-engine sharing and provides a unified caching layer for global
memory management. Furthermore, SqueezeCache improves cache
hit rates by matching column lineage rather than requiring exact
query matches. Predicate caching [53] is a special case of Squeeze-
Cache where the squeeze policy generates a predicate-specific bit-
mask. Like predicate caching, SqueezeCache automatically deter-
mines column usage and applies similar optimizations.

3 OVERVIEW

The core insight of SqueezeCache is that caching effectiveness
should be driven by how data is used, not just how frequently it is
accessed. By analyzing query patterns, a cache can transform data
into compact, lossy representations—"squeezing" it—to retain only
the essential information needed for query processing. To illustrate,
consider a (stackoverflow) query counting posts mentioning "Rust",
grouped by day of the week:

SELECT EXTRACT(DOW FROM Date) AS day_of_week, COUNT(*)
FROM table WHERE Title LIKE "%Rust%"
GROUP BY day_of_week;

Conventionally, a cache stores the full Date (64-bit integer) and
Title (string). However, the query only requires the day-of-week
(3 bits) and a substring match on the title. Storing the full data
wastes most of memory. SqueezeCache addresses this inefficiency
through three fundamental components, as shown in Figure 3.

1. Squeezable Data Layouts (Section 4). The foundation of Squeeze-
Cache is the ability to store data in lossy, query-efficient formats,
in addition to the standard lossless compression. Instead of opaque
blocks, we design data layouts that allow partial retention. For ex-
ample, Date can be squeezed to just the day-of-week, and Title
can be squeezed to a membership fingerprint. The main challenge
is designing these layouts to be compact enough to save significant
memory while remaining expressive enough to answer common
predicates without accessing the full data.

2. Lineage Pushdown (Section 5). To decide what to squeeze, the
cache must understand query intent. SqueezeCache employs Lin-
eage Pushdown to bridge the semantic gap between the query en-
gine and the cache. By analyzing the column lineage (e.g., Date —
EXTRACT (DOW)), the system identifies the minimal subset of infor-
mation required. The challenge lies in extracting this information
from complex query plans with low overhead and communicating
it to the cache without tightly coupling the systems.

3. Squeeze Policy (Section 6). Finally, the system must decide
when and how much to squeeze. Squeezing is not a binary decision

Optional

T 1 Prefix-Len

1] 3 e Squeeze to drop
l 0 ApaChe_ 5 Offsets Compressed data
1 2 Operati 255

11 0

1 2

,1, 1 Fingerprints

0 2

— 01011010..

1 (o 00001110. .

0 3 11111010..

1] 3 00000000. .

Figure 4: Overview of string layout. The byte-view of the string is
similar to previous work, where each string has a header (which encodes
string length, offset to the buffer, and a prefix), and a string buffer which
contains the actual string data.

but a spectrum. SqueezeCache introduces a policy that manages
the lifecycle of cached entries, transitioning them through multiple
states—from fully uncompressed, to losslessly compressed, to lossy
"squeezed" representations, and finally to eviction. The challenge
is to balance the trade-offs between memory pressure, CPU cost
for transformation, and the potential I/O cost of retrieving full data
when the squeezed representation is insufficient.

4 SQUEEZABLE DATA LAYOUTS

We define Squeezing as the general process of transforming in-
memory data into more compact forms to free up space, ranging
from lossless compression to lossy partial retention, and ultimately
to disk eviction. While lossless compression is essential, it is a well-
studied topic and is handled in prior systems like LiquidCache [31],
BtrBlocks [36], and FastLanes [1] using cascading encoding. In this
section, we focus on the novel contribution of SqueezeCache: Par-
tial Eviction. Partial eviction creates lossy, memory-efficient repre-
sentations that retain just enough information to answer common
query predicates. Different data types and workloads require dif-
ferent partial eviction strategies. The following subsections show
how these approaches apply to each data type.

4.1 Squeezing Strings

String workloads are dominated by comparisons (95%) and sub-
string searches (5%). Since comparisons are often resolved by length
or the first few bytes, SqueezeCache adopts a split representation
similar to Umbra and Arrow’s StringView: a fixed-size header in-
lines a short prefix and metadata (length, offset), while the full
string resides in a separate buffer. Figure 4 shows the memory lay-
out of our squeezeable string. It has a null array (one bit per string)
to indicate which strings are null (note null strings are not empty
strings). By default, all strings are dictionary encoded (we follow
the same convention as Parquet). It then has a key array, which is
a 16-bit unsigned integer array that stores dictionary keys. The ac-
tual string data is then compressed using FSST [16]. We store an
additional offset array (4 bytes per unique string) to help locate the
strings we need to decompress (selective decompression).

4.1.1 Droppable string buffer. Prior work inlines a prefix in the
header, arguing that prefixes matter most. We take this further: un-
der memory pressure, we drop the compressed string buffer from
memory entirely. When a full string is needed (e.g., the prefix is



insufficient or the query projects the full value), we read the corre-
sponding byte range from disk, locate the offset via the string in-
dex, and decompress only the required string. FSST’s fast random
access makes this practical. Since offsets and the compressed buffer
dominate string storage, dropping the buffer frees significant mem-
ory and allows more strings to remain cached.

4.1.2  Single string buffer. Our string layout uses a single buffer
rather than multiple buffers as in some prior designs. This saves
4 bytes per string by eliminating per-string buffer tracking. Fine-
grained caching (typically 8K rows per batch) makes a single buffer
practical.

4.1.3  Optimistic string length. We use 1 byte to encode string
length instead of the standard 4 bytes. Value 255 serves as a sen-
tinel indicating the string exceeds 255 bytes, triggering a disk read
or decompression for the full length. Prior studies show over 99% of
real-world strings are shorter than 255 bytes, so this saves 3 bytes
per string with negligible performance impact.

4.1.4 String fingerprint. String fingerprints [56] accelerate sub-
string search by hashing each 1-gram into buckets, producing a bit
array encoding which characters may appear. Fingerprints quickly
rule out strings that cannot contain the search needle. More buckets
reduce false positives at higher storage cost; advanced hash func-
tions can further reduce collisions. SqueezeCache uses 32 buckets
with round-robin assignment by default.

4.1.5 Optional prefix and fingerprint. Both prefix and fingerprint
have storage costs. If lineage analysis (Section 5.1) or administrator
configuration indicates a column is never used for substring match-
ing, we skip the fingerprint; similarly for prefixes. These compo-
nents act as optional lightweight indexes—dropping them does not
affect correctness.

4.2 Squeezing Integers

\?]‘1’7]‘;[3]\:]‘;71[,‘]8]9];0[;;]12]15]14[15\ \w)]‘Z}IYHI‘ZI431]/L‘9]4[n]A]4]8/[4]A]2]z[0\
[TTTTTTTTI e A I e |
\{“ula‘«“rlrizl;l‘l‘l‘l‘l7l7l7l7l3l3lil3 ‘ﬂtﬁ#!jls 3[z]o[1]2]s 2] [5]2]5]
= ) l\,}g? } o l\/)g:

[NInw] NN e Y [y v Y] [wInIn[eelz]nnnIn]2n]n]2]v]z]

Figure 5: Overview of squeezable integer. Integers can be squeezed by
quantizing (left) or clamping (right) to a fixed range. Squeezed integers are
smaller but can still answer many filters.

Integers are the second most frequent data type. When used in
predicates (typically comparisons), full precision is often unneces-
sary. For example, comparing a sensor ID rarely requires all 64 bits.
Squeezing reduces precision; more squeezing saves memory but
increases ambiguity (requiring disk reads).

Figure 5 shows two modes of integer squeezing in SqueezeCache:
(1) quantization (left), and (2) clamping (right). We borrow the idea
of quantization from machine learning and quantize integers to
lower precision before fully evicting them to disk. In the example in
Figure 5, the 16 values (4 bits per value) are quantized into 4 buckets
(2 bits per value), cutting memory usage by half. When evaluating
a predicate, we first quantize the predicate value, and compare the

quantized value with the quantized column values. If the quantized
values match, we treat the result as ambiguous; otherwise, we can
safely decide the comparison from the quantized values. In the
example in the Figure, 75% of the values can be evaluated by the
quantized values.

Quantization works well for comparisons but loses information
and cannot recover original values. SqueezeCache also supports
clamping, which limits integers to a fixed range—values outside are
clamped to the boundary (e.g., values > 3 become 3 in Figure 5).
Unlike quantization, clamping preserves exact values within the
range, making it suitable for columns used in both predicates and
projections. Clamping works best when values cluster around a
center with occasional outliers (e.g., sensor readings in anomaly
detection); quantization suits columns used only for filtering where
exact values are unneeded.

For signed integers, we first convert them to unsigned integers,
using FoR (frame of reference) encoding - subtract every value by
the minimum value of the column. Once quantization and clamping
are applied, we then apply the bit-packing encoding to the integers.
By default, we will quantize/clamp the integers to use half of the
bits to represent the integer.

4.3 Squeezing Decimals

Decimals are physically integers: Decimal128 uses 128-bit integers
to represent values, and Decimal256 uses 256-bit integers. The dec-
imal datatype contains two parameters: precision and scale. For ex-
ample, 123.45 has precision 5 and scale 2. This representation makes
decimal computation isomorphic to integer computation, so it can
reuse the integer squeezing techniques from the previous section.
One exception is when the value range exceeds u64, the widest
integer type supported by our primitive integer encoding. In that
case, we first check the value range of the array and fall back to the
fixed-length byte array encoding as discussed in LiquidCache [31].

4.4 Squeezing Floating Numbers

Floating numbers are first losslessly compressed using ALP[2],
which are encoded into integers by multiplying them with an ex-
ponent (e) and an inverse factor (f). Floats that cannot be losslessly
encoded using this approach are stored separately as exceptions.
The encoded integers are subsequently compressed using Frame of
Reference encoding. SqueezeCache squeezes the encoded integers
using the quantization approach described in Section 4.2. Since the
percentage of exceptional values is expected to be small, our imple-
mentation doesn’t apply squeezing to these values.

4.5 Squeezing DateTimes

Time-related types (datetimes, timestamps) are physically integers.
For example, Arrow’s Date32 is a 32-bit integer (days since 1970-01-
01). While integer techniques apply, we can exploit datetime seman-
tics, specifically extract operations. For example, extract(year,
datetime) is common. Snowflake reports datetime extractions in
16% of queries, making optimization crucial.

Figure 6 shows an example of datetime and its semantic based
squeezing. At the top is the original integer value (1767811243). We
can treat it as a normal integer and use the integer squeezing tech-
nique described in the previous section, but this does not fully use



datetime semantics. Knowing that this integer represents seconds
since 1970-01-01T00:00:00Z, we can decode it into semantic compo-
nents (year, month, day, etc.). If the query only uses day-of-week, we
can squeeze the datetime to store only the day-of-week component
in memory. SqueezeCache will automatically analyze the user SQL
queries, and find all the operations applied to the datetime column,
and pass the extracted information down to the cache (Section 5.1).

Physical
+1767811243 ~YS'e@
value
+ .
2026-01-07T 13: 05:00 Semantic
meaning
v
Year Hour Tz WoY |DoY | Squeezed
2026 3 ET 7 values

Figure 6: Datetime squeezing. Although physically stored as a single
integer, datetime can be squeezed with different semantic components.

An alternative approach is to decompose the datetime into stati-
cally pre-defined components, such as year, month, and day, and
only cache the “columns” that are actually being used in the user
query. Although simple, this approach is not efficient for compo-
nents like day-of-week or week-of-year, where the required infor-
mation is not neatly represented by year/month/day. Our approach
generalizes hard-coded year-month-day extraction and handles
more complex extraction operations.

Multiple components can be extracted from the same datetime
column, e.g., both year and month are frequently used, then both of
them can be squeezed and cached in memory. Some components are
superset of others, e.g., month is a superset of quarter, i.e., knowing
month implies knowing quarter. In this case, we will only squeeze
to the month component.

Once the desired components are extracted, SqueezeCache per-
forms a cascading encoding to the extracted values: perform frame
of reference encoding, then bit-packing encoding. The final value is
then stored in the cache. A squeeze of Date32 to day-of-week uses
only 3 bits per entry, leading to almost a 10X memory reduction.
The squeezed data supports both predicate evaluation (when pred-
icates extract a squeezed component) and final projection (when
the projection only needs that component).

4.6 Squeezing Variants (JSON)

Variant is a datatype popularized by Databricks and Snowflake for
semi-structured data (e.g., JSON). Conventionally, they are either
stored as strings (requiring decoding and repeating field names)
or as nested Parquet columns (which compress well but require a
known schema). Variant provides a middle ground: arbitrary fields
without repeating field names (similar to binary JSON), with native
Parquet support. Since 2023, Variant has appeared in over 10% of
Snowflake queries.

As shown in Figure 7, queries typically extract only a few fields,
e.g., loc.city and id. A squeezed variant extracts these fields,
avoiding the slow path of dynamic extraction. Under memory pres-
sure, instead of evicting the entire variant, we shred it into columns
for frequently accessed fields. A later variant_get reconstructs
the object from shredded columns if available.

{" { : "madison", "zip": 53703}} Original values
{" { : "madison"}, "id": 556}
It ( "state": "WI"}, "id": 762)
{" { ": "pitts"}, "id": "unknown"}
4.Evict

Figure 7: Squeeze a variant column into a set of shredded columns.
Variant is a new datatype popularized by Databricks. We can shred the vari-
ant column into a set of shredded columns, and only cache the shredded
columns in memory. When a variant get operation is called, we can recon-
struct the variant object from the shredded columns.

Title

gSqueeze hint

SqueezeCache |

Figure 8: Column lineage example. SqueezeCache analyzes the query to
extract the lineage of each column. For CreationDate, the lineage reveals
that only the day-of-week component is needed. For Title, the lineage
indicates a substring match, suggesting a fingerprint is sufficient. This
information guides the cache to squeeze the data into compact, query-
specific representations.

The Variant related operations are implemented as user-defined
functions (UDFs) in the query engine. Users can call variant_get
to extract fields from the variant column, or variant_to_json to
convert a variant object to a JSON string. Similar to time-based
squeezing, one variant column can be shredded into multiple columns,
and we only cache the shredded columns in memory.

5 LINEAGE PUSHDOWN

Squeezing leverages the specific ways queries access data to reduce
memory usage. However, the cache cannot deduce these access pat-
terns from the raw data requests alone; it requires higher-level se-
mantic information from the query engine. This section introduces
“lineage pushdown,” a mechanism that analyzes query plans to ex-
tract column usage patterns and pushes this context down to the
cache, enabling it to safely serve partial data.

5.1 Lineage analysis

To serve queries using squeezed data, SqueezeCache must ensure
that the lossy representation retained in memory is sufficient to an-
swer the query. This requires determining not just which columns
are accessed, but specifically which semantic components of those
columns are used. SqueezeCache employs lineage analysis to re-
construct the operation history for each column. For instance, in-
stead of fetching the full date on a cache hit, SqueezeCache might
return 2025-01-01 (derived from 2025-07-26) if the lineage confirms
the query only performs a year extraction.



Query Engine
Requested: DateTime

2026-01-01 (DateTime)? 1 2026-07-28 (DateTime)
|SqueezeCache: 2026 (Int)l |Disk: 2026-07-28 (DateTime) |

Figure 9: SqueezeCache creates a synthetic value when the cached
data type does not match the expected type. The lineage analysis en-
sures that the unused components are not needed by the query.

As shown in Figure 8, SqueezeCache analyzes the query’s col-

umn lineage to determine which components to keep. For CreationDate,

the lineage [scan -> extract(dow) -> group by] indicates
only the DOW component is needed. For Title, the lineage [scan
-> filter(like)] suggests that a membership fingerprint is suffi-
cient to filter most rows.

Once we have the lineage, we simply check whether the extrac-
tion operations are the first operation applied to that column, if
not, it means the query reads the full data, thus conflicts with our
optimization. For example, if the lineage is [date -> extract(year) ->
filter(year = 2025)], then we can safely apply the optimization, but
if the lineage is [date -> filter(year > 2025-01-01) -> extract(year)],
then we cannot apply the optimization.

Simple string/regex matching to determine extraction usage is
neither sound nor complete: columns can have aliases, and nested
expressions may still be optimizable even without pattern matches.
SqueezeCache performs lineage analysis at the logical plan level.
The analysis is implemented as an optimizer rule that recursively
traverses expressions bottom-up and builds a column-usage map.
Physical plan analysis is possible but more verbose.

Once the lineage is built, we need to pass it down to the Liquid-
Cache. Since lineage analysis is implemented as an optimizer rule
(i.e., there is no direct function call to receive its output), it has to em-
bed the lineage information into the logical plan. SqueezeCache em-
beds the lineage information into the data provider node’s schema’s
metadata, which allows a per-field metadata. This way, when the
query engine reads from LiquidCache, LiquidCache checks schema
metadata to decide which optimizations it can apply.

The cache API also needs to support this metadata. Specifi-
cally, the conventional get and insert APIs receive an optional
cache-operation hint parameter. This hint tells the cache what op-
eration is being applied, and the cache uses it to decide whether
get can be served from squeezed data. For example, if the hint is
extract(year), and the cache also only has year component in
memory, the cache will return the year component directly, with-
out looking at the original disk data.

5.2 Handling Data Type Mismatches

Mismatches occur when squeezed data has a different physical type
than the original schema. We handle two primary cases.

The first case involves scalar extraction, such as extracting the
year from a datetime. While the squeezed data is logically an inte-
ger (the year), the query engine expects a datetime. As shown in
Figure 9, SqueezeCache returns a synthetic datetime value where
only the relevant component is valid (e.g., 2026-01-01T00:00:00Z
when only the year 2026 is needed). This is safe because the lineage
analysis ensures that the unused components are not needed by
the query. The second case involves structural mismatches, such as

Uncompressed

CHOHEH ] 1msere

Compressed 2. Squeeze (compress)

OO o

Partially
evicted

4. Squeeze (full eviction)
Disk

Figure 10: Overview of the life of an array in SqueezeCache. Arrays
are inserted as uncompressed data. When the cache fills, squeeze opera-
tions progressively transition entries: uncompressed data is compressed,
compressed data is partially evicted, and finally, squeezed data is evicted
from the cache.

a query scanning a struct with fields a and b when only b is actu-
ally used. If SqueezeCache returns only b, the schema mismatch
breaks downstream operators. While decoupling logical from phys-
ical types could solve this, current standards like Arrow bind them
tightly. Instead, SqueezeCache employs a lightweight plan optimiza-
tion pass. Based on lineage analysis, it rewrites the query schema
to request only the squeezed components (e.g., column b directly),
removing the struct wrapper.

5.3 Tracking Squeeze Metadata

To determine optimal squeeze targets (e.g., whether to retain year
or month), SqueezeCache must track usage patterns. Naive per-
access tracking introduces prohibitive memory and synchronization
overheads. To mitigate this, SqueezeCache adopts a hybrid strategy.
Coarse-grained tracking handles the common case where opera-
tions apply uniformly to an entire column (e.g., table scans). Usage
is tracked at the query plan level (control plane), incurring zero
execution-time overhead.

Fine-grained tracking handles filtered data where usage diverges
across entries. To minimize overhead, SqueezeCache maps expres-
sions to 2-byte IDs via a registry. Each entry maintains an 8-byte
header storing the four most recent operation IDs. These are packed
into a single 64-bit word, allowing updates via lock-free atomic
Compare-And-Swap (CAS) operations. This design ensures thread
safety with negligible impact on scan performance.

6 SQUEEZE POLICY

Once data is squeezable, the next question is when and how to
squeeze it. Unlike traditional eviction which makes a binary de-
cision (keep or evict), SqueezeCache exposes a fine-grained spec-
trum of memory states. This structure creates a rich optimization
space and serves as a research framework for future work to ex-
plore complex policies that dynamically navigate these tradeoffs.
This section discusses the default squeeze policy in SqueezeCache.

Figure 10 shows an array’s life cycle in SqueezeCache. Arrays
transition through four states: uncompressed, compressed, par-
tially evicted, and evicted. Inserted as uncompressed, they are com-
pressed, then partial eviction, and finally evicted as the cache fills.
Specifically, squeeze targets the uncompressed queue, then com-
pressed, then partial evcited.



6.1 Squeeze Spectrum

While conventional eviction offers a binary choice (keep or evict),
squeezing offers a spectrum of options. SqueezeCache can choose
“how far” to squeeze each entry, transitioning it from uncompressed,
to compressed (lossless), and finally to partially evicted (lossy).

Lossless squeeze (compression) is the first step. This generalizes
cascading encoding, balancing compression ratio against decoding
performance. Our squeeze policy extends this tradeoff to include
I/O costs: holding compressed data reduces memory pressure while
still avoiding expensive disk reads. Prior work on learning optimal
cascading encodings can directly inform this stage of the squeeze
policy. Lossy squeeze (partial eviction) is the next step, trading
fidelity for memory. Aggressive squeezing reduces memory usage
but increases the likelihood that a query will require a disk read.
Unlike the lossless stage, lossy squeezing forces a choice about what
data to discard, as we discuss in the next section.

6.2 Selection Policy

When the system is under memory pressure, it must pick a cached
entry to squeeze, similar to an eviction policy. Figure 10 shows that
SqueezeCache uses three queues to manage cached entries and
prioritizes squeezing less-squeezed entries. Alternatively, the cache
can use a single queue, but this ignores the entry’s current state.
Within each queue, we can apply standard eviction policies such as
LRU, FIFO, S3-FIFO, and SIEVE. SqueezeCache implements these
policies, and by default uses FILO (first in, last out), since analytical
cache workloads are often scan-intensive.

Similar to eviction, squeezing can be passive (triggered when the
cache runs out of memory) or active (background threads proac-
tively squeeze entries). This approach trades extra CPU overhead
for better latency on a cache full. SqueezeCache by default uses a
passive squeeze policy.

Unlike eviction, squeezing must decide what to do with the
squeezed entry after the state transition. For example, if the squeeze
policy uses a LRU, should it add the squeezed entry to the front
or the back of the LRU queue? SqueezeCache by default treats a
squeezed entry as a fresh insert (it is inserted into the corresponding
queue as a new entry).

Partial eviction is lossy, so when we squeeze a compressed entry
into a partially-evicted entry, we also write the full data to disk
and record its location. This allows later hydration (Section 6.4) to
read it back. By default, SqueezeCache writes the compressed data
(LiquidArray [31]) to disk, because it is highly compressed, and
requires no deserialization on read.

6.3 Retention Policy

Given lineage information (Section 5.1), the cache must decide
which components to retain. The simplest case is when the query
extracts a single component, such as extract(year) from a date-
time column. Here, the cache keeps only the year in memory and
squeezes the rest to disk. When queries reference multiple fields
(e.g., year and month, or several JSON paths), the cache ideally uses
a cost-based policy considering memory pressure, query history,
and compressibility. Currently, SqueezeCache retains all referenced
fields; we leave cost-based selection to future work.

A second complexity arises from compatibility between fields:

some can be derived from others. For example, if lineage analysis
shows that both month and quarter are extracted from the same
datetime, we observe that quarter can be derived from month—so
retaining month provides quarter at no extra cost. Similarly, if a
query extracts both “location” and “location.country” from a variant,
the latter can be derived from the former. Currently, SqueezeCache
does not exploit these derivations; we leave compatibility-aware
policies as future work.

6.4 Hydration Policy

Similar to cache policy, squeeze policy must handle workload changes.
For example, one query may care about the year, but gradually more
queries care about the month. The cache needs to dynamically ad-
just the squeezed data to better reflect the current workload. The
process of increasing the size of the squeezed data is called hydra-
tion, similar to the promotion in the conventional cache.

Hydration is triggered on a “cache miss” for squeezed data: we
read data from disk, or we find that a partially-evicted entry is not
enough to answer the query, or we find that compressed data is
critical enough that it is better to cache it uncompressed.

Similar to squeeze, hydration is also a spectrum: we can hydrate
in one shot to full uncompressed data, or gradually hydrate step
by step. SqueezeCache implements multiple hydration strategies,
and users can choose the one that best fits their workload. By de-
fault, SqueezeCache uses a conservative strategy: it only hydrates
to compressed data and never hydrates to uncompressed data, as
we rarely see a batch of data that is so critical to justify the uncom-
pressed memory size.

6.5 Discussion: When Squeeze is Not Beneficial

There are two types of squeezing: compression and partial eviction.
Compression is always beneficial in our experiments because analyt-
ical data is usually compressible, and modern encoding techniques
provide high compression ratios with efficient decoding. However,
partial eviction is not always beneficial. The key trade-off is the re-
maining in-memory size versus how much I/O it can save. We dis-
cuss a few empirical cases where partial eviction is less beneficial:
e Data is already well-compressed. Partial eviction happens after
compression (as a remedy for imperfect compression). If data is
already near-perfectly compressed, partial eviction is unlikely
to help. For example, if an integer array can be perfectly com-
pressed using run-length encoding, then there is no room for
partial eviction to make a difference. This occurs frequently in
synthetic datasets (e.g., TPC-H, TPC-DS), where strings are sim-
ple categorical values and integers have narrow ranges. Real-
world data is often more complex and diverse [57, 60, 61].

o Full projection is required. If the query actually needs the full
data, partial eviction is unlikely to help. For example, in an
ETL pipeline that transforms and rewrites data into another sys-
tem/shape/format, partial eviction is unlikely to be beneficial.
For columns that are not suitable for partial eviction (which

SqueezeCache can infer from lineage analysis plus a sample of the

data), SqueezeCache skips partial eviction and caches the full data

as compressed data.



7 EVALUATION

Our evaluation demonstrates three key findings:

o Strong end-to-end performance: On ClickBench, Squeeze-
Cache reduces query latency by up to 22x and I/O by up to 12x
compared to baselines (Section 7.3).

o Superior cache efficiency: SqueezeCache achieves 2-4X higher
cache hit ratios than compression-only baselines across memory
budgets (Section 7.4).

e Mechanism versatility: Squeezing benefits diverse operations—
predicate evaluation, substring search, and projection expressions—
by adapting squeezing to query lineage (Sections 7.5-7.7).

7.1 Implementation

We implemented SqueezeCache on top of LiquidCache [31] with
33k lines of Rust, including 14K for squeezable data types, 11K for
lineage pushdown, and 7K for the squeeze policy. The project has
engaged over 20 community contributors and is now merged into
the main branch as the default eviction mechanism. Crucially, all
techniques integrate via query optimization rules, requiring no
modifications to downstream query engines.

We run the evaluation on an AMD 9900x CPU with 24 threads
(12 cores), on NixOS with Linux kernel 6.12, equipped with PCIe5.0
NVMe SSD. Benchmarks are compiled with Rust 1.94.0-nightly (and
also work with the latest stable Rust). For memory-constrained
benchmarks, we use cgroups to limit memory usage. In addition
to the benchmarks reported in this study, we continuously run
performance evaluations (including ClickBench, TPC-H, TPC-DS,
and JSONBench) on every commit to the main branch, and publish
results in our open-source repository.

7.2 Baselines

We compare SqueezeCache with the following baselines: Arrow:
Arrow caches inserted data as-is, without compression or partial
eviction. This baseline represents the best choice for low latency
queries today, e.g., BauPlan [58]. LiquidCache: LiquidCache [31]
compresses data but does not perform partial eviction. This baseline
represents the state-of-the-art compression-only cache.

7.2.1  Non-baselines. Eviction policies like LRU-K [49], SIEVE [71],
and S3-FIFO [68] are orthogonal to SqueezeCache. Result caching,
predicate caching, and materialized views are also excluded, as
they are either special cases of SqueezeCache or they operate at
different caching hierarchy and lack the cross-engine reuse required
for lakehouse-wise data analytics.

7.3 End-to-end Evaluation

7.3.1 ClickBench. ClickBench [20] is an industry-standard an-
alytical benchmark with 15GB (100M rows) of real-world web
analytics data. This benchmark includes many short, selective
queries typical of low-latency workloads. We focus on filter-heavy
queries from Q20 to Q30. They include complex filter patterns and
variable-length fields. These queries represent the target workload
for SqueezeCache: scan-intensive operations over variable-length
data where squeeze can retain query-relevant information. The re-
maining queries do not benefit from squeezing but perform simi-
larly, incurring no slowdown.

== Arow  mm LiquidCache SqueezeCache
44 59 10.8 1

3.9 X 24

o

3ms 6ms. 9ms 3ms 4ms oms s [Bbsms 06ms oms

Query time (rel.)
o =
o o

o

Q20 Q21 Q22 Q23 Q30 ——

- o
o w

16

220° 851 632 883

10 count (rel.)

o

Figure 11: ClickBench overall performance comparison. Query time
and I/O count comparison between SqueezeCache and the baselines. Values
are normalized to the LiquidCache baseline. The I/O device is kernel page
cache, so end-to-end query time mainly reflects in-memory processing time.

Figure 11 shows the overall performance comparison between
SqueezeCache and the baselines. The x-axis shows query num-
ber. The y-axis shows query time (upward) and I/O count (down-
ward). Values are normalized to the LiquidCache baseline. The val-
ues shown on LiquidCache are raw query time and I/O count. We
deliberately run with kernel page cache so end-to-end query time
mainly reflects in-memory processing time; otherwise, query time
would be dominated by I/O. Since queries have dramatically differ-
ent data sizes, we set the cache size of all variants to roughly half
of the actual memory usage for LiquidCache. This ensures each
query exercises both memory and disk access. We report I/O count
(number of io_uring syscalls) as a separate metric because cloud
systems price I/O by number of requests. Even when I/O latency is
negligible, data-intensive systems still reduce I/O to save cost.

SqueezeCache performs best on 9 of 10 queries, reducing query
time by up to 2X vs. LiquidCache and 22X vs. Arrow. The sole
regression is within 5%. Regarding I/O, SqueezeCache leads on 7 of
10 queries, reducing counts by up to 8X vs. LiquidCache and 12X vs.
Arrow. For the other 3, SqueezeCache matches LiquidCache and
outperforms Arrow.

Not all queries improve on both I/O and end-to-end query time.
Q20 and Q23 mainly benefit from faster in-memory processing with
the same I/O count. They mostly benefit from squeezing to string
fingerprints (Section 7.6), which reduces the number of rows to
decode. Q21 and Q28 mainly benefit from I/O reduction, but overall
query time does not improve much because (1) I/O is virtually
free in this setup and (2) these queries spend substantial time on
computation outside scanning (e.g., regex matching).

7.3.2 TPC-H and TPC-DS.. As discussed in Section 6.5, while TPC-
H and TPC-DS are popular analytical benchmarks, they are less suit-
able for our workloads for two reasons. First, their synthetic data is
simple and highly compressible [31], and multiple studies show it
does not reflect real-world workloads [57, 60, 61]. Partial eviction
is rarely necessary. Second, their queries are join-heavy and less
scan-/I/O-intensive, so our gains are less pronounced than in scan-
intensive, low-latency workloads. Nevertheless, SqueezeCache can
gracefully fall back without introducing overhead by skipping par-
tial eviction and only using compression to save memory.


https://github.com/XiangpengHao/liquid-cache
https://github.com/XiangpengHao/liquid-cache

1e7

1.0 e I | A e e A= A
] o3
© > Memory used by CPU
- Theoretical S, (Theoretical optimal)
< optimal £
© 05 GE) —8— Arrow
ey . .
8 .. 1 ~—#— LiquidCache
S] & SqueezeCache

0.0 —m==
B 16 32 A 428 9256 512402404
Cache size (MB)

8 16 232 oA 428256 512402404
Cache size (MB)

Figure 12: Cache size vs cache hit ratio (left) and actual referenced

memory (right). Cache hit ratio is the number of batches cached in

memory divided by the total number of batches. Actual referenced memory

is LLC (last level cache) references X cacheline size. It approximates total

memory traffic from memory to CPU.

7.4 Cache Dynamics

Having established the end-to-end benefits, we now analyze how
SqueezeCache’s cache efficiency varies with memory budget. We
use ClickBench Q25, a representative query that exercises string
predicate evaluation. Figure 12 shows the cache size vs cache hit
ratio (left) and actual referenced memory (right). We compare
SqueezeCache with two baselines: (1) Arrow, which caches inserted
data as-is, and (2) LiquidCache, which compresses data but does not
perform partial eviction. The x-axis sweeps cache size from 8MB to
2048MB on a log scale. The y-axis shows cache hit ratio (number of
batches cached in memory divided by total batches) and actual ref-
erenced memory (LLC references X cacheline size, approximating
total memory traffic from memory to CPU).

7.4.1  Overall results. SqueezeCache consistently outperforms Liq-
uidCache by 2x in terms of cache hit ratio, and 4x compared to
Arrow. All of the variants are able to cache all data at 2048MB
cache size. Specifically, at 256MB cache size, SqueezeCache is able
to cache 93.5% of data, while LiquidCache and Arrow are only able
to cache 50.0% and 17.9% of data, respectively.

7.4.2 How far are we from optimal? SqueezeCache is a major
step towards optimal cache utilization, but gaps remain. The gray
dashed line shows the theoretical optimum, needing only 32MB—
60x smaller than total data. We compute this from the right plot:
CPU LLC (last level cache) references indicate memory-to-CPU traf-
fic during query execution. SqueezeCache is suboptimal because
it manages data in batches, not individual rows, with fixed prefix
lengths per batch. Smaller batches could help, but at the cost of
higher metadata overhead and fewer SIMD optimization opportu-
nities.

7.4.3  How does the cache composition look like? In SqueezeCache,
cached entries are not fixed: they can be Arrow, Compressed, or
Squeezed. Figure 13 shows how their relative entry count changes
with the cache size. Again, we compare SqueezeCache with Lig-
uidCache and Arrow. The stacked area chart shows the relative
entry count of each type of entries. By default, we use a simple
squeeze policy that prioritizes squeezing less-squeezed entries (Ar-
row first, then Compressed, then Squeezed). This is evident in the
figure: when cache size is small (e.g., 128MB), all three variants end
up with a single entry type in the cache: Arrow, Compressed, and
Squeezed, respectively. This happens because, under tight memory
budgets, entries are squeezed to their most compact format. As the

Arrow LiquidCache SqueezeCache

10000 Cache entry types
I Arrow
Compressed
5000 I Squeezed

Number of Entries

0

23 25 27 29 211 23 25 27 29 211 23 25 27 29 211
Cache Size (MB) Cache Size (MB) Cache Size (MB)
Figure 13: Cache entry composition comparison. Number of different
types of entries in the cache. Arrow has only one type of entry, LiquidCache
additionally has compressed entries, and SqueezeCache additionally has
squeezed entries.

—— LiquidCache
SqueezeCache

Query time (ms)
\

8 16 32 64 128 256 512 1024 2048
Cache size (MB)
Figure 14: Query time comparison with kernel page cache as the
I/0 backend. Query time comparison between SqueezeCache and the
baselines, with kernel page cache as the I/O device. Kernel page cache is a
transparent cache mechanism provided by Linux kernel, a cache hit only
costs a few microseconds.

cache size increases, other types of entries are gradually possible
to be cached in memory.

7.4.4  It’s not all about 10. One might think these workloads are
only bounded by I/O, and query time is mainly a function of the
number of I/Os. However, as we will show here and in other stud-
ies [31], the in-memory data processing time is also a significant
portion of the query time. Figure 14 shows query time comparisons
between SqueezeCache and the baselines, with kernel page cache
as the I/O backend. Kernel page cache is a transparent cache mech-
anism provided by Linux kernel, a cache hit only costs a few mi-
croseconds. With this almost ideal I/O backend, one might expect
similar query times. However, SqueezeCache is still an order of
magnitude faster than the Arrow baseline (when cache size is be-
low 512MB). This is because the squeezed data in SqueezeCache
is much more efficient to process, i.e., relevant data are closer to
each other, leading to fewer CPU memory stalls. Similar effects
also appear in LiquidCache, where its selective decompression sig-
nificantly reduces memory stalls. After 512MB cache size, both
SqueezeCache and LiquidCache start to accommodate Arrow en-
tries. As a side effect, more queries are served from Arrow data,
and query time increases and eventually matches the baseline.

7.5 Squeeze Helps Equality Predicates

We now examine how squeezing achieves the gains shown above.
Using ClickBench Q25, we demonstrate that SqueezeCache’s prefix
squeezing retains sufficient information to resolve most selective
predicates without disk I/O. This query finds the top 10 non-empty
search phrases in alphabetical order—a pattern that appears ubiqui-
tously in real-world queries.



Arrow Compressed Squeezed Evicted
LiquidCache 1 5850 N/A 6367
SqueezeCache 2 6 11556 654
Avg size/batch | 298 KB 43.9 KB 23.1KB 0

Table 1: Cache composition for ClickBench Q25 (256MB cache,
565MB data). Columns show batch counts per state. SqueezeCache
squeezes 95% of entries vs. baseline’s 52% eviction, with average entry sizes
shown in the last row.

‘ # Read evicted (total) # Read squeezed (total)

LiquidCache
SqueezeCache

6,367 (6,367) N/A

654 (654) 239 (11,556)
Table 2: I/O operations for reading evicted vs. squeezed data (total
batch reads in parentheses). For evicted data, every batch read is one
1/0. For squeezed data, I/O occurs only if the squeezed data cannot resolve
the predicate or full data is needed.

SELECT "SearchPhrase" FROM hits
WHERE "SearchPhrase" <> ''
ORDER BY "SearchPhrase" LIMIT 10;

7.5.1 Isitagood(fit for SqueezeCache? The predicate SearchPhrase
<> 7 works well with squeezable strings (Section 4.1): the prefix

alone often decides the predicate. Although selectivity is only 13.1%,

DataFusion also adds a dynamic filter [11] of the form SearchPhrase
>= X based on current top-10 results. This filter allows Squeeze-

Cache to prune batches using squeezed prefixes, benefiting queries

without explicit filters.

7.5.2  Cache composition. The on-disk data for this query is about
565MB; we set cache size to 256MB. Table 1 shows the cache com-
position after query execution. SqueezeCache caches data at batch
granularity (8,192 rows), with each entry in one of four states: Arrow
(uncompressed), Compressed (using LiquidArray [31]), Squeezed
(using techniques from this paper), or Evicted (on disk). Entries
start as Arrow and are progressively squeezed as memory pressure
increases (Section 6.1).

In the baseline, roughly half of cached entries are evicted to
disk, and the other half are cached as compressed data. In Squeeze-
Cache, 95% of cached entries are squeezed (partially evicted while
keeping essential data in memory). This is the intended behavior: by
squeezing each entry, SqueezeCache can keep more entries in cache.
The last row shows the average size of the cached entries, with
Arrow being the largest at 298 KB per entry, compression making it
7x smaller at 43.9KB, squeezing it makes it almost 2x smaller again
at 23.1KB. With the same cache space, caching squeezed data can
accommodate roughly twice as many entries in memory. If those
squeezed entries can answer the filter predicate, then the query can
be evaluated without reading the entire data from disk.

7.5.3 Does squeezing help predicate evaluation? This query has
two filters: the user-specified SearchPhrase <> ” and dynamically
generated SearchPhrase >= X. Squeezed prefixes can answer both,
though the dynamic filter is more selective. Table 2 shows the I/O
breakdown. The baseline reads all 6,367 evicted batches. Squeeze-
Cache reads only 654 evicted batches, plus 239 of 11,556 squeezed
batches (2.1%) that require full data to resolve ambiguity.

Figure 15 shows the 37 dynamic filters generated during query
execution. We track three metrics: Selectivity is the percentage of
rows passing the filter; below 10~* means fewer than 1 row per
8,192-row batch is expected to pass. Ambiguity shows the percent-
age of rows that could be pruned with the full data but can not be
pruned with squeezed data. Batches evaluated shows how many
batches the query engine evaluates with each filter.

o -3 : Selectivity —s—  Ambiguity # Batoh evaluated - 5000
s 10 %
a - -4000 ©
3 10 ¢ T 2
3~ = ©
2 5- -3000 3
£3107: 3
38 5
210"+ -2000° 2
= o
S 107 ey - 1000 *
© z
? i \.N

10 ®: -0

5 10 15 20 25 30 35
Dynamic filter generation
Figure 15: Dynamic filter generations, with their selectivity and
ambiguous rate. Selectivity is the percentage of rows that pass the filter.
Ambiguity shows the percentage of rows that can not be pruned with
squeezed data. As query progresses, more selective filters are generated and
ambiguity drops.

As shown in Figure 15, as the query engine updates filters, selec-
tivity drops and stabilizes around 0.6 X 107 after 14 filters. This
corresponds to 203 batches that require full data reads (final pro-
jection). The ambiguity rate is consistently much lower than the
selectivity and drops to as low as 4 X 1078, The dataset has 100M
rows, indicating that only 4 rows (expected) are ambiguous during
runtime, and that translates to up to 4 IOs.

Next, we analyze prefix length sensitivity. SqueezeCache defaults
to a prefix length of 7 bytes, but other lengths are possible. We
measure differentiability: the fraction of unique values captured
by the prefix. Higher differentiability means the prefix alone can
distinguish more values, reducing I/Os needed to resolve predicates.
Figure 16 shows the differentiability of the squeezed data for each
prefix length. It shows three string columns: SearchPhrase, URL,
and Title. The SearchPhrase represents human input string, URL
is structured string, and Title is between the two. SearchPhrase is
the most differentiable column, and URL is the least differentiable
column. Note that the differentiability is computed after we exclude
the common prefix of the batch. In general, longer prefix length has
higher differentiability, but at the cost of higher storage overhead.
SqueezeCache’s default prefix length of 7 balances differentiability,
storage overhead, and memory alignment.

7.6 Squeeze Helps Substring Predicates

SqueezeCache adapts its squeeze strategy based on query patterns.
Prefixes are ineffective for substring searches in ClickBench Q20
which finds how many urls contain the substring ’google’

SELECT COUNT(*) FROM hits WHERE "URL" LIKE '%google%';

SqueezeCache uses fingerprints in this case to reduce memory
required for caching. To evaluate the effectiveness of fingerprints,
we ran Q20 using the same setup as the previously (Baseline) and



E —e— SearchPhrase

506 —= URL

E Title !

:E 0.4 | < Default prefix length

© H

x02 "

“ﬂ;} 1 H—_./.
. ¥

12 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Prefix length
Figure 16: Prefix length sensitivity analysis. Differentiability is com-
puted as the number of unique values captured by the prefix, divided by
the total number of unique values in the batch.

‘ 10 Decode rows (time) Query time
LiquidCache 11450 19M (6.8 s) 380 ms
SqueezeCache | 11981 10M (3.0 s) 191 ms

Table 3: Fingerprint performance on ClickBench Q20. IO: batch reads.
Decode rows: rows decompressed (CPU time in parentheses). Fingerprints
reduce decoded rows by 47%, halving query latency.

configured SqueezeCache to use column lineage analysis to auto-
matically squeeze to string fingerprints, configured to use 32 buck-
ets (i.e., 4 bytes per string) with a simple round-robin bucket as-
signment. The results are shown in Table 3. The I/O counts are sim-
ilar (fingerprints do not reduce I/O), but SqueezeCache requires
slighly more IO due to fingerprint overhead. When reading from
fast NVMe drives, decoding often dominates query time [31] as is
the case in our experiments. Even though the same I/O is performed,
SqueezeCache significantly reduced the number of decoded rows
from 19M to 10M (6.8 seconds to 3.0 seconds), resulting in a 57.4%
reduction in overall query time. Fingerprints improve performance
even when I/O count stays the same due to SqueezeCache’s row-
level decompression (inherited from LiquidCache) allows skipping
individual rows rather than entire batches.

Fingerprints filter out 57.7% of the string values for this query
and configuration. For the remaining 42.3% of the string values,
99.97% are false positives (do not contain the substring “google”).
Better assignment strategies for fingerprints exist [56], which we
plan to pursue in future work, but even the simple round-robin
assignment is effective.

7.6.1 Fingerprint overhead analysis. Figure 17 sweeps bucket sizes
from 4 to 64; more buckets reduce collisions and improve filter-out
rates, at 1 bit per string per bucket. SqueezeCache uses 32 buckets
by default. Both test patterns (“google” and “database”) have near-
zero occurrence, so higher filter-out rates indicate more effective
fingerprints. SearchPhrase in general is more fingerprint-friendly
than URL and Title, potentially because it is much shorter than
the other two. We also profiled and optimized fingerprint creation
and querying through compiler auto-vectorization, making both
processes as fast as string scanning. In summary, this case study
demonstrates that SqueezeCache’s lineage analysis allows it to
adapt to diverse workloads (e.g., substring search) and automatically
apply the appropriate squeeze strategy.

Pattern: "database"

e e

Pattern: "google"

SearchPhrase

Filtered out %
(4]
o

25 URL
0 Title
4 8 16 32 64 4 8 16 32 64

Bucket size (n) Bucket size (n)

Figure 17: Fingerprint bucket size vs filter effectiveness. The bucket
size is the number of buckets used to store the fingerprint.

JSON object Referenced by query  Squeezed
4.16 MB 0.16 MB 0.09 MB
Table 4: Average batch size comparison. JSON object shows the size of

the JSON object in the table. Referenced by query shows the size of the JSON
fields referenced in the query. Squeezed shows the size of the squeezed data.

7.7 Squeeze Identifies Sub-Fields

Now we study a new category of squeezing: sub-field extraction.
We consider two workloads: (1) nested-JSON-like extraction and (2)
datetime extraction. JSON (and other semi-structured data) extrac-
tion is a fundamental pillar of semi-structured data processing. Ex-
isting systems either disallow direct queries on semi-structured data
until it is transformed into queryable data through an ETL pipeline,
or require ad-hoc annotations or pre-computed JSON-specific in-
dexes/subsystems to accelerate JSON queries [26]. SqueezeCache
naturally supports direct JSON queries through squeeze: lineage
analysis captures which fields are used, and the cache squeezes and
caches those fields in memory. Datetime extraction is another com-
mon example that benefits from squeezing, but it is usually not
worth building a special-purpose system for. It fits naturally into
SqueezeCache’s framework.

We optimize both SqueezeCache and Parquet’s Variant support,
with our changes upstreamed [30]. All data is pre-shredded to iso-
late caching effects from runtime extraction overhead. We analyze
JSONBench Q1 [21], which counts the number of events in the
“bluesky” table, grouped by the “event” field.

SELECT data['commit.collection'] AS event, COUNT(*) AS count
FROM bluesky GROUP BY event ORDER BY count DESC;

Table 4 shows the size of the JSON object in the table, the size
used in the query, and the size of the squeezed data. The original
JSON object is 4.16 MB, while the query only references 0.16 MB.
The squeezed data is what SqueezeCache caches: it automatically
extracts used fields and applies cascading encoding into LiquidAr-
ray [31], yielding 0.09 MB per batch—a 46X reduction in size.

Table 5 shows runtime performance: the baseline caches only
2.5% of data, while SqueezeCache caches 100% in memory with
01/0, yielding 3.2x lower query latency. Notably, SqueezeCache
generalizes JSON-specific optimizations—it supports efficient semi-
structured queries automatically without special handling.

Next, we study a less common optimization that benefits from the
same framework: datetime extraction. This is a real-world stackover-
flow query that counts the number of posts by the day of the week.
We run this query on the StackOverflow math dataset, which is



‘ #10 Cacheratio Query time
120 2.5% 49 ms
0 100% 15 ms

LiquidCache
SqueezeCache

Table 5: Json bench runtime performance comparison. # IO shows
the number of IOs caused by reading evicted data and reading squeezed
data. Cache ratio shows the ratio of the cached data to the total data.

‘ Arrow Compressed Squeezed Evicted
2 258 N/A 235
3 240 252 0

Table 6: Cache composition comparison. Number of cached batches,
each batch consists 8192 rows.

LiquidCache
SqueezeCache

Month
3.0 MB

DoW
2.3 MB

Year
2.2 MB

Arrow Compressed
24 MB 9.0 MB

Day
3.7 MB

Table 7: Date time squeezed size comparison. Arrow shows the size of
the Arrow format. Compressed shows the size of the LiquidArray format.
Year, Month, Day, DoW show the size of the year, month, day, and day-of-
week components (squeezed).

roughly 12GB after compression, again, we set the memory budget
to roughly half of the actual memory usage. Table 6 shows the cache
composition comparison between the baseline and SqueezeCache.
With the same memory budget, baseline can cache 260 batches in
memory, and 235 batches are required to be read from disk. Squeeze-
Cache can cache all 295 batches in memory, with no IO required.

SELECT EXTRACT(DOW FROM "CreationDate") AS day_of_week,
COUNT(x) AS post_count
FROM "Posts" GROUP BY day_of_week;

Table 7 further explains their performance difference. Baseline
only caches the full datetime column (Arrow or compressed Lig-
uidArray), which is wasteful when the query only uses (for exam-
ple) year. LiquidArray can effectively compress the datetime col-
umn by 2.7x, allowing much more data to be cached. The squeezed
data can further reduce the memory usage. Here we showcase four
commonly extracted date components: year, month, day, and day-
of-week. They further reduce memory usage by 4.1%, 3.0X, 2.4X,
and 3.9X, respectively.

Similar optimizations also apply to StructArray extraction, where
a query uses only a sub-column but the query engine still needs to
read and decode the entire struct column. SqueezeCache automati-
cally extracts relevant columns, applies cascading encoding, and
caches them in memory. Due to space limits, we omit detailed eval-
uations here. Overall, these experiments demonstrate that Squeeze-
Cache effectively generalizes to complex types (JSON and Date-
time), automatically identifying and retaining only the minimal se-
mantic components required by the workload.

8 RELATED WORK

Caching is a well-studied topic in systems and databases. The evic-
tion policy determines which data to keep. Recent work has pro-
posed many advanced policies beyond LRU and ARC [44, 49], in-
cluding machine learning-based approaches such as GL-Cache [67]

and Baleen [65], and simplified but efficient algorithms such as S3-
FIFO [68] and SIEVE [71]. SqueezeCache is orthogonal to these
policies; it improves the utility of the cached data itself, allowing
any eviction policy to store more effective entries.

The cache mechanism determines how data is stored. Tradi-
tional systems use buffer pools or OS page caches [8, 22]. Modern
tiered memory systems [32, 38, 43] extend capacity using CXL or
NVMe. Disaggregated caching systems like Crystal [25] and Al-
luxio [4] manage data in remote storage, while InfiniCache [64] ex-
ploits ephemeral serverless functions to build cost-effective mem-
ory caches. Semantic caching [39, 53] leverages query semantics to
cache partial results. SqueezeCache extends the idea of semantic
caching with squeezing, a lossy lineage-aware compression mecha-
nism that bridges the gap between full caching and eviction.

Cloud-native data warehouses such as Snowflake [7, 57], Red-
shift [6, 60] and BigQuery [45] separate compute from storage. This
disaggregation makes I/O the bottleneck [27, 47] and necessitates
effective caching (e.g., Photon [12], Velox [50]). Instance-optimized
data layouts [24] adapt storage organization to workload patterns,
while cloud functions [15, 58] can serve as accelerators for elastic
data analytics. Computation pushdown [17, 66, 69] reduces I/O by
filtering data at storage. SqueezeCache extends the pushdown par-
adigm into the cache layer, allowing the cache to serve as a query
accelerator by retaining only the data needed for common predi-
cates (e.g., string prefixes or extracted dates).

Efficient data representation is the key to analytic system per-
formance. Columnar formats such as Parquet [62] and Arrow [37]
are standard. Compression techniques have evolved from general-
purpose (Snappy, Zstd) to specialized encodings: FSST [16] for
strings, ALP [2], Chimp [40], and Gorilla [51] for floating-point

numbers, and FastLanes [1] and BtrBlocks [36] for integers. MorphStore [23]

takes a holistic approach by enabling compression-aware query
processing throughout the entire query engine. Beyond compres-
sion, data-skipping techniques like Sieve [59] use learned indexes
to efficiently skip irrelevant data, and workload-aware column im-
prints [55] adapt indexes to query patterns. SqueezeCache lever-
ages these lightweight encodings for its “compressed” state but
goes further with “squeezing”—using lossy representations (quanti-
zation, fingerprints [56]) to trade precision for capacity when mem-
ory is scarce.

9 CONCLUSION

We presented SqueezeCache, a novel caching mechanism that chal-
lenges the binary decision of traditional eviction policies. By rec-
ognizing that queries often require only a fraction of the data
they touch, SqueezeCache introduces the concept of “squeezing”™—
partially retaining critical data segments like string prefixes or ex-
tracted date components while evicting the rest. This lineage-aware
approach enables SqueezeCache to maintain higher cache effec-
tive capacity and serve more queries from memory. Our evaluation
demonstrates that SqueezeCache significantly outperforms existing
baselines in cache hit ratio and end-to-end latency, proving that fine-
grained, semantic-aware data management is key to unlocking the
next generation of performance for disaggregated cloud analytics.



REFERENCES

(1]

(2]

[14]

[15]

[16]
[17]

(18

[19]

[20]

[21]

[22]

[23]

[24]

Azim Afroozeh and Peter Boncz. 2023. The fastlanes compression layout: Decod-
ing> 100 billion integers per second with scalar code. Proceedings of the VLDB
Endowment 16, 9 (2023), 2132-2144.

Azim Afroozeh, Leonardo X Kuffo, and Peter Boncz. 2023. Alp: Adaptive lossless
floating-point compression. Proceedings of the ACM on Management of Data 1, 4
(2023), 1-26

Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang Chen, Ming
Dai, et al. 2021. Napa: Powering scalable data warehousing with robust query
performance at Google. Proceedings of the VLDB Endowment 14, 12 (2021), 2986~
2997.

Alluxio. 2024. Alluxio - Data Orchestration for Al and Analytics. Alluxio, Inc. https:
/Iwww.alluxio.io A distributed cache platform that accelerates Al and analytics
workloads by providing high-speed data access across different storage systems,
offering up to 4x faster AI model training and 8 GB/s throughput per client.
Amazon Web Services. 2024. Amazon ElastiCache for Valkey and for Redis OSS.
https://aws.amazon.com/elasticache/redis/ Accessed: August 2024.

Amazon Web Services. 2024. Amazon Redshift - Cloud Data Warehouse. Amazon
Web Services, Inc. https://aws.amazon.com/redshift/ A cloud data warehouse
service offering SQL analytics at scale with features including serverless com-
puting, zero-ETL integration, and ML capabilities.

Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
a new generation of open platforms that unify data warehousing and advanced
analytics. In Proceedings of CIDR, Vol. 8. 28.

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2018. Operating
Systems: Three Easy Pieces (1.00 ed.). Arpaci-Dusseau Books.

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2023. Operating
Systems: Three Easy Pieces (1.10 ed.). Arpaci-Dusseau Books.

Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. 2017. Recache:
Reactive caching for fast analytics over heterogeneous data. Proceedings of the
VLDB Endowment 11, 4 (2017), 324-337.

Adrian Garcia Badaracco and Andrew Lamb. 2025. Dynamic Filters: Passing
Information Between Operators During Execution for 25x Faster Queries. Apache
DataFusion. https://datafusion.apache.org/blog/2025/09/10/dynamic-filters/
Blog post.

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, et al. 2022. Photon: A fast query engine for lakehouse systems. In
Proceedings of the 2022 International Conference on Management of Data. 2326—
2339.

Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage
computer. IBM Systems journal 5, 2 (1966), 78—101.

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar,
Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter,
and Gregory R. Ganger. 2020. The CacheLib Caching Engine: Design and Expe-
riences at Scale. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 753-768.

Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using Cloud Func-
tions as Accelerator for Elastic Data Analytics. Proceedings of the ACM on Man-
agement of Data 1, 2 (2023), 161:1-161:27. doi:10.1145/3589306

Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of the VLDB Endowment 13, 12 (2020), 2649-2661.
Boudewijn Braams. 2018. Predicate pushdown in parquet and Apache spark. Ph.
D. dissertation (2018).

Zhichao Cao et al. 2022. Making Cache Monotonic and Consistent. Proceedings
of the VLDB Endowment 16, 4 (2022), 891-904.

Jianjun Chen, Rui Shi, Heng Chen, Li Zhang, Ruidong Li, Wei Ding, Liya Fan,
Hao Wang, Mu Xiong, Yuxiang Chen, Benchao Dong, Kuankuan Guo, Yuanjin
Lin, Xiao Liu, Haiyang Shi, Peipei Wang, Zikang Wang, Yemeng Yang, Junda
Zhao, Dongyan Zhou, Zhikai Zuo, and Yuming Liang. 2023. Krypton: Real-
time Serving and Analytical SQL Engine at ByteDance. Proceedings of the VLDB
Endowment 16, 12 (2023), 3528-3542. doi:10.14778/3611540.3611545
ClickHouse. 2022. ClickBench: A Benchmark for Analytical Databases. https:
//github.com/ClickHouse/ClickBench. GitHub repository. Accessed: 2025-02-17.
ClickHouse contributors. 2025. JSONBench: a Benchmark For Data Analytics
On JSON. https://github.com/ClickHouse/JSONBench. Open-source benchmark
comparing native JSON support across analytical databases.

Andrew Crotty, Viktor Leis, and Andrew Pavlo. 2022. Are You Sure You Want to
Use MMAP in Your Database Management System?. In CIDR 2022, Conference on
Innovative Data Systems Research.

Patrick Damme, Annett Ungethiim, Johannes Pietrzyk, Alexander Krause, Dirk
Habich, and Wolfgang Lehner. 2020. MorphStore: Analytical Query Engine with
a Holistic Compression-Enabled Processing Model. Proceedings of the VLDB
Endowment 13, 11 (2020), 2396-2410.

Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,

[25

[26

[28

[29

[30]

(31]

[32

(33]

[38

[39

(41

[42]

[43

[44

=
i)

[46

[47

Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud Analytics Workloads. In Proceedings of the
2021 ACM SIGMOD International Conference on Management of Data. 418-431.
doi:10.1145/3448016.3457270

Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: a unified
cache storage system for analytical databases. Proceedings of the VLDB Endow-
ment 14, 11 (2021), 2432-2444.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2021. JSON tiles: Fast ana-
lytics on semi-structured data. In Proceedings of the 2021 International Conference
on Management of Data. 445-458.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. Proceedings of the VLDB Endow-
ment 16, 11 (2023), 2769-2782.

Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee.
2020. ChronoCache: Predictive and Adaptive Mid-Tier Query Result Caching. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2391-2406. doi:10.1145/3318464.3380593

Xiangpeng Hao and Badrish Chandramouli. 2024. Bf-tree: A modern read-write-
optimized concurrent larger-than-memory range index. Proceedings of the VLDB
Endowment 17, 11 (2024), 3442-3455.

Xiangpeng Hao and contributors. 2025. Improve “variant_get” performance on
a perfect shredding. https://github.com/apache/arrow-rs/pull/8887. Pull request
8887, merged into arrow-rs main branch.

Xiangpeng Hao, Andrew Lamb, Yibo Wu, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. 2025. LiquidCache: Efficient Pushdown Caching for Cloud-
Native Data Analytics. Proc. VLDB Endow. 18, 13 (2025), 5662-5675. d0i:10.14778/
3773731.3773741

Xiangpeng Hao, Xinjing Zhou, Xiangyao Yu, and Michael Stonebraker. 2024.
Towards Buffer Management with Tiered Main Memory. Proceedings of the ACM
on Management of Data 2, 1 (2024), 1-26.

Theodore Johnson and Dennis Shasha. 1994. X3: A low overhead high perfor-
mance buffer management replacement algorithm. In Proceedings of the 20th
VLDB Conference. 439-450.

Tao Kong, Hui Li, Yuxuan Zhao, Liping Li, Xiyue Gao, Qilong Wu, and Jiangtao
Cui. 2025. STsCache: An Efficient Semantic Caching Scheme for Time-series
Data Workloads Based on Hybrid Storage. Proceedings of the VLDB Endowment
18, 9 (2025), 2964-2977. doi:10.14778/3746405.3746421

Adarsh Kumar et al. 2025. Linear Elastic Caching via Ski Rental. In CIDR.
Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: efficient columnar compression for data lakes. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1-26.

Andrew Lamb, Yijie Shen, Daniél Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A
Fast, Embeddable, Modular Analytic Query Engine. In Companion of the 2024
International Conference on Management of Data. 5-17.

Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574-587.

J Lietal. 2025. STsCache: An Efficient Semantic Caching Scheme for Time-series
Data Workloads Based on Hybrid Storage. Proceedings of the VLDB Endowment
18 (2025).

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: efficient lossless floating point compression for time series databases.
Proceedings of the VLDB Endowment 15, 11 (2022), 3058-3070.

Jian Liu, Kefei Wang, and Feng Chen. 2021. TSCache: An Efficient Flash-based
Caching Scheme for Time-series Data Workloads. Proceedings of the VLDB
Endowment 14, 13 (2021), 3253-3266. doi:10.14778/3484224.3484225

J Lu et al. 2025. DEX: Scalable Range Indexing on Disaggregated Memory.
Proceedings of the VLDB Endowment 17 (2025), 2603-2616.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. Tpp: Transparent page placement for cxl-enabled
tiered-memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3.
742-755.

Nimrod Megiddo and Dharmendra S Modha. 2003. {ARC}: A {Self-Tuning},
low overhead replacement cache. In 2nd USENIX Conference on File and Storage
Technologies (FAST 03).

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
et al. 2020. Dremel: A decade of interactive SQL analysis at web scale. Proceed-
ings of the VLDB Endowment 13, 12 (2020), 3461-3472.

Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chi-
dambaram. 2021. Analyzing and Mitigating Data Stalls in DNN Training. Pro-
ceedings of the VLDB Endowment 14, 5 (2021), 771-784.

Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu, and Patricia C Arocena.


https://www.alluxio.io
https://www.alluxio.io
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/redshift/
https://datafusion.apache.org/blog/2025/09/10/dynamic-filters/
https://doi.org/10.1145/3589306
https://doi.org/10.14778/3611540.3611545
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/JSONBench
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1145/3318464.3380593
https://github.com/apache/arrow-rs/pull/8887
https://doi.org/10.14778/3773731.3773741
https://doi.org/10.14778/3773731.3773741
https://doi.org/10.14778/3746405.3746421
https://doi.org/10.14778/3484224.3484225

[48]

[49]

[50]

[51]

[52

[53]

[54]

[55]

[56

[57]

[58]

[60

[61

[62]

[63]

[64

[65]

[69]

[70

2019. Data lake management: challenges and opportunities. Proceedings of the
VLDB Endowment 12, 12 (2019), 1986-1989.

Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anastasia Ailamaki.
2023. HetCache: Synergising NVMe Storage and GPU acceleration for Memory-
Efficient Analytics. In Proceedings of CIDR.

Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K page
replacement algorithm for database disk buffering. Acm Sigmod Record 22, 2
(1993), 297-306.

Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s unified
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372-3384.
Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816-1827.
U Sabarwal et al. 2023. HetCache: Synergising NVMe Storage and GPU Acceler-
ation for Memory-Efficient Analytics. In CIDR.

Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and Tim Kraska.
2024. Predicate caching: Query-driven secondary indexing for cloud data ware-
houses. In Companion of the 2024 International Conference on Management of
Data. 347-359.

Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao Feng, Yang-
fan Zhou, and Michael R. Lyu. 2023. Ditto: An Elastic and Adaptive Memory-
Disaggregated Caching System. In Proceedings of the 29th Symposium on Operat-
ing Systems Principles (SOSP). 675-691. doi:10.1145/3600006.3613144

Noabh Slavitch. 2020. Workload-Aware Column Imprints. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2865-2867.
doi:10.1145/3318464.3384411

Mihail Stoian, Johannes Thiirauf, Andreas Zimmerer, Alexander van Renen, and
Andreas Kipf. 2025. Instance-Optimized String Fingerprints. arXiv preprint
arXiv:2507.10391 (2025).

Jan Vincent Szlang, Sebastian Bress, Sebastian Cattes, Jonathan Dees, Florian
Funke, Max Heimel, Michel Oleynik, Ismail Oukid, and Tobias Maltenberger.
2025. Workload Insights from the Snowflake Data Cloud: What Do Production
Analytic Queries Really Look Like? Proceedings of the VLDB Endowment 18, 12
(2025), 5126-5138.

Jacopo Tagliabue, Tyler Caraza-Harter, and Ciro Greco. 2024. Bauplan: zero-copy,
scale-up faas for data pipelines. In Proceedings of the 10th International Workshop
on Serverless Computing. 31-36.

Yulai Tong, Jiazhen Liu, Hua Wang, Ke Zhou, Rongfeng He, Qin Zhang, and
Cheng Wang. 2023. Sieve: A Learned Data-Skipping Index for Data Analytics.
Proceedings of the VLDB Endowment 16, 11 (2023), 3214-3226. doi:10.14778/
3611479.3611520

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is not enough: An analysis of the Amazon Redshift fleet.
Proceedings of the VLDB Endowment 17, 11 (2024), 3694-3706.

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Miihlbauer, Thomas Neumann, and Manuel Then. 2018. Get real:
How benchmarks fail to represent the real world. In Proceedings of the Workshop
on Testing Database Systems. 1-6.

Deepak Vohra and Deepak Vohra. 2016. Apache parquet. Practical Hadoop
Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools (2016),
325-335.

Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Mo-
tivala, and Thierry Cruanes. 2020. Building an elastic query engine on disag-
gregated storage. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 449-462.

Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In 18th
USENIX Conference on File and Storage Technologies (FAST 20). 267-281.

Daniel Lin-Kit Wong, Hao Wu, Carson Molder, Sathya Gunasekar, Jimmy Lu,
Snehal Khandkar, Abhinav Sharma, Daniel S Berger, Nathan Beckmann, and
Gregory R Ganger. 2024. Baleen: ML Admission & Prefetching for Flash Caches.
In 22nd USENIX Conference on File and Storage Technologies (FAST 24). 347-371.
Cong Yan, Yin Lin, and Yeye He. 2023. Predicate pushdown for data science
pipelines. Proceedings of the ACM on Management of Data 1, 2 (2023), 1-28.
Juncheng Yang, Yao Yue, and Rashmi Vinayak. 2023. GL-Cache: Group-level
learning for efficient and high-performance caching. In 21st USENIX Conference
on File and Storage Technologies (FAST 23). 115-130.

Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak. 2023.
FIFO queues are all you need for cache eviction. In Proceedings of the 29th
Symposium on Operating Systems Principles. 130-149.

Yifei Yang, Xiangyao Yu, Marco Serafini, Ashraf Aboulnaga, and Michael Stone-
braker. 2024. FlexpushdownDB: rethinking computation pushdown for cloud
OLAP DBMSs. The VLDB Journal 33, 5 (2024), 1643-1670.

Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, Badrish Chandramouli,
Vincent Liu, and Boon Thau Loo. 2022. CompuCache: Remote Computable

[71]

[72]

Caching using Spot VMs. In Proceedings of CIDR.

Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and KV Rashmi. 2024.
{SIEVE} is simpler than {LRU}: an efficient {Turn-Key} eviction algorithm
for web caches. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24). 1229-1246.

Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. 2023. Two is
better than one: The case for 2-tree for skewed data sets. memory 11 (2023), 13.


https://doi.org/10.1145/3600006.3613144
https://doi.org/10.1145/3318464.3384411
https://doi.org/10.14778/3611479.3611520
https://doi.org/10.14778/3611479.3611520

	Abstract
	1 Introduction
	2 Background
	2.1 Caching Policies and Mechanisms
	2.2 Caching for Cloud-Native Analytics
	2.3 Architectural Prerequisites
	2.4 Relationship to Existing Mechanisms

	3 Overview
	4 Squeezable Data Layouts
	4.1 Squeezing Strings
	4.2 Squeezing Integers
	4.3 Squeezing Decimals
	4.4 Squeezing Floating Numbers
	4.5 Squeezing DateTimes
	4.6 Squeezing Variants (JSON)

	5 Lineage pushdown
	5.1 Lineage analysis
	5.2 Handling Data Type Mismatches
	5.3 Tracking Squeeze Metadata

	6 Squeeze policy
	6.1 Squeeze Spectrum
	6.2 Selection Policy
	6.3 Retention Policy
	6.4 Hydration Policy
	6.5 Discussion: When Squeeze is Not Beneficial

	7 Evaluation
	7.1 Implementation
	7.2 Baselines
	7.3 End-to-end Evaluation
	7.4 Cache Dynamics
	7.5 Squeeze Helps Equality Predicates
	7.6 Squeeze Helps Substring Predicates
	7.7 Squeeze Identifies Sub-Fields

	8 Related Work
	9 Conclusion
	References

