

On premise !-> cloud (2010-2020)

Compute
Storage

BI

Compute
Storage

Report

Compute
Storage

ML

Compute
Storage

Data science

BI Report ML DS

Shared storage

Every system has a cache
(2020-2025)

Latency: >100ms
Cost: per request

BI Report ML DS

Shared storage

Cache Cache CacheCache

Vision: shared cache (2025+)

Shared storage

BI Report ML DS

Shared cache

BI

Report

ML

DS

Shared storage

Cache once,
read everywhere

Independent scale

Thesis goal: LiquidCache

Shared storage

BI Report ML DS

LiquidCache

Thesis goal:

Design a cost-effective shared cache
system by combining compute and data,
while preserving ecosystem compatibility.

First attempt: byte cache

Shared storage

BI Report ML DS

Shared cache

Challenges:

1.Network bottleneck

2.Inefficient cache eviction

LiquidCache = compute + data

Shared storage

BI Report ML DS

LiquidCache

 Pushdown to reduce network

 Data-guided eviction

Bundled CPU in
every server

LiquidCache = compute + data

Shared storage

BI Report ML DS

LiquidCache

 Pushdown to reduce network

 Data-guided eviction

Bundled CPU in
every server

VLDB 2025
(hopefully)

Pushdown to reduce network

Shared storage

BI Report ML DS

Shared cache

Network bottleneckBundled CPU

Projection

Filter

Sort

Scan

Projection

Filter

Sort

Scan

Network!

Network!

Previously believed bottleneck:
Filter evaluation

Our findings:
Data decoding

Pushdown overwhelms cache CPU

LiquidCache

Part 1:
co-designed format to skip decoding

Part 2:
progressive, selective, asynchronous transcoding

 100-200 ms
Object Store

LiquidCache

 1 ms

Compute

Part 1:
co-designed format to skip decoding

Parquet page

Read one row

Decode all

Parquet page

Extract

Co-design principle:
Each row must be independently decodable

Read one row

Decode one

Desired page

Each row must be independently decodable
(string example)

No general purpose
compression

Leverages state-of-
the-art encoding
schemes

Carefully designed
encoding/layout for
each data types

Co-design with filter pushdown

location location

Decode Filter

location

Load

location val

Only decode three rows

(selective decoding)

Co-design with filter pushdown

location location

Decode Filter

location

Load

location val

(filter late materialization)

date date date

location

Decode

location

Filter

location date

Decode

date

Filter Load

location val

Co-design with filter pushdown
(evaluate on encoded data)

Decode

‘Apache Arrow’‘Apache Arrow’

a

c

Baseline Evaluate on encoded

In paper:
Evaluate on partially
encoded data

LiquidCache

Part 1:
co-designed format to skip decoding

Part 2:
progressive, selective, asynchronous transcoding

 100-200 ms
Object Store

LiquidCache

 1 ms

Compute

Part 2:
progressive, selective, asynchronous transcoding

Yet another file format?
Nimble

Vortex

No!
Technical: they are not much different
Organizational: license, governance, ecosystem
LiquidCache: progressively bend the world

progressive transcoding

 100-200 ms
Object Store

LiquidCache

 1 ms

Compute

Progressive transcoding

Parquet file

(Disk)

Partial
Liquid

Fully
Liquid

Parquet
subset

Progressive:
Transcode as needed,
no upfront cost

 100-200 ms
Object Store

LiquidCache

 1 ms

Compute

Selective transcoding

location date val

Selective:
Transcode only touched data

Asynchronous transcoding

Asynchronous:
Transcode when less busy

0

100

6 am 12 pm 6 pm 12 am 6 am

Transcode

With same memory: 10x lower latency With same CPU: 10x lower CPU time

Decoding cost: close to theoretical optimal Compression ratio: comparable to Parquet

Transcoding cost: negligible, no latency spike

LiquidCache = compute + data

Shared storage

BI Report ML DS

LiquidCache

 Pushdown to reduce network

 Data-guided eviction

Bundled CPU in
every server

Proposed work

Motivating example

Apache DataFusion
InfluxDB

UW-Madison

Evict
Arrow Parquet

Apache DataFusion

Arrow Parquet

FILO eviction

InfluxDB

UW-Madison

Apache DataFusion

UW-Madison

LRU eviction

InfluxDB
Arrow Parquet

LLM-based eviction
Apache DataFusion

Arrow Parquet
InfluxDB

UW-Madison

Count(name = “Apache DataFusion”)

FILO
Cache miss

LRU
2
2

LLM-based
2Theoretical opt.
2

Retained
Evicted

Can we do better?

Apache DataFusion
InfluxDB

Arrow Parquet
UW-Madison

LiquidEvict

Retained
Evicted

Count(name = “Apache DataFusion”)

Conventional
Cache miss

LiquidEvict
2
1

Data-guided eviction

Apache DataFusion
InfluxDB

UW-Madison

Evict
Arrow Parquet

Conventional
Apache DataFusion

Arrow Parquet
InfluxDB

UW-Madison

Insight: evict partial data

Shared storage

BI Report ML DS

LiquidCache

Some parts of data are
more important than others

SearchPharse !!= ‘’

Real-world queries
MobilePhoneModel !!= ‘’

p_brand !== ‘Brand#23’

r_name !== ‘EUROPE’

n_name !== ‘SAUDI ARABIA’

UserID !== 435090932899640449

MIN(“URL”)

MIN(“TITLE”)

l_quantity < 24

String prefix

String length

Bit width

Min/max/avg Nullable mask

Dictionary

Evicts data, keep summaries

0x98105
0x53703
0x94040
0x15214

Evict

LiquidEvict

Retained
Evicted

Find “0x80309”?

Conventional
Cache miss

LiquidEvict

3

0?

0x98105

0x94040

Conventional

0x53703

0x15214

Bloom filter

Real world example: StringView eviction

Apache DataFusion
InfluxDB

Arrow Rust Impl
Parquet pushdown

Logical content Physical representation
17 0 0 Apac

8 InfluxDB

15 0 17 Arro

16 1 0 Parq
Apache DataFusion

17 0 0 Apac

A p a c h e D
a t a F u s i o
n A r r o w R
u s t I m p l

Buffer 0

P a
a

r q u e t
p u s h d

u
o w n

Buffer 1

Views

String length

Buffer id

Buffer offset

Prefix

Conventional: evict the entire array
LiquidEvict (structure-aware):
1.Evict buffers
2.Retain only prefix and str len
3.Retain only prefix

LiquidCache + LiquidEvict

Shared storage

BI Report ML DS

LiquidCache

Data-aware cache
1.Pushdown to reduce traffic
2.Efficient decoding

Data-aware eviction
1.Evicts unimportant parts of data
2.Evicts data, keep summaries

Shared, pushdown cache system
10x lower latency, 10x lower cost

Timeline

Shared storage

BI Report ML DS

LiquidCache

Jun. 1 - LiquidCache VLDB revision
July 1 - LiquidEvict prototype
Aug 1 - LiquidEvict bench & polish
Sep 1 - LiquidEvict VLDB submission
Dec 1 - LiquidEvict revision
Jan - Mar 2026 - Polish & present
May - Defense + graduate

Other first-author papers:

Bf-Tree: A Modern Read-Write-Optimized Concurrent Larger-
Than-Memory Range Index.
Xiangpeng Hao, Badrish Chandramouli. (VLDB 2024)

Towards Buffer Management with Tiered Main Memory.
Xiangpeng Hao, Xinjing Zhou, Xiangyao Yu, Michael
Stonebraker. (SIGMOD 2024)

https://github.com/
XiangpengHao/liquid-cache

Huge thanks to InfluxData for
supporting the project in 2024–25

Need your help:

1.Make LiquidEvict real

2.Make LiquidCache ready for your company

3.Advance science and serve the public good

$50k charitable giving supports 1 PhD/year

20% of a FTE cost! Better than most chatbots!

